DCV Logic for Damper Control Team 1 -

Alex Craig, James Head, Caleb Hutchings, Ryley Tharp, Chris Whitton

Setup of Sensor and Damper

Dual Relay Switch

Elegoo MEGA 2560 Arduino Board

The Real World

What we learned through research

CO2 Dispersion

What to Consider:

VARIABLE	SYMBOL	UNIT
Number of People	Ν	-
Volume	V	m ³
Initial CO2	Ci	ppm
Measured CO2	Со	ppm
Critical CO2	C1	ppm
CO2 per Person	q	m³/hr
Number of Exchanges per Hour	n	1/hr

Why we chose **not** to use that formula

- Requires several variables
- Only establishes time until critical level
- Does not consider flow rate
- Number of persons can

change

The Equations

- Conversion from CO₂ measurement to degrees:
 - Measured $CO_2(ppm) * \frac{Maximum Degree of Openness (°)}{Critical CO_2 Change (ppm)}$
- Conversion from degrees to travel time:

• Degrees * Total Travel Time (sec) Maximum Degree of Oppenness (°)

What We Chose and Why

- Simplistic: Only requiring one variable
 - The sensor provides all of the information
- Arduino is limited in storage of previous measurements
 - Can only remember one previous value
- Team is limited in coding knowledge
 - Unfamiliar with Arduino coding language and only limited training in regards to general coding
- Manages damper position and allows for variable airflow
- Provides real-time feedback from sensor to damper
- Can track damper position relative to the x-axis

The Logic

- Initial Setup
 - The Sensor requires time to initialize and stabilize.
- Damper Returns Home
 - The damper closes in order to establish a "home" position of 0°.

RESULTS

- Shown are the first and last 3 readings
- Reading 15 was taken after the sensor was exhaled upon
- This illustrates the variable nature of the logic in relation to CO2 levels and damper open position

	1	2	3	13	14	15
Sensor Reading (ppm)	624	632	628	644	646	783
Uncertainty (+/-)	68.72	68.96	68.84	69.32	69.38	73.49
Change in CO2 (ppm)	0	8	-4	2	2	137
Movement Time (sec)	0.00	0.76	-0.38	0.19	0.19	13.02
Damper Position (degrees)	11.16	11.88	11.52	12.96	13.14	25.47
Direction	CLOSE	OPEN	CLOSE	OPEN	OPEN	OPEN

CONCLUSIONS

What we learned:

- Demand Control Ventilation has many factors to consider
- To monitor CO2 levels, a sensor is very beneficial
- Using this sensor, a stable concentration of CO2 can be maintained
- The logic process takes careful consideration
 - Streamlining this process comes with time and experience
- Proficiency in logical thinking and coding of Arduino and Excel systems was achieved

The Experiment:

- The CO2 sensor works
- The position of the damper can be controlled
- The position of the damper allows a variable flow rate into the system
- In theory, the damper could effectively control the concentration of CO2 in a real-world environment

Questions?